电竞企鹅直播平台

无刷电机的工作原理与扭矩

来源:电竞企鹅直播平台    发布时间:2024-04-24 07:09:19

产品描述:

  大家对电机的认识可能就是高中课本里的交变电流章节的例子,电刷+外磁场+通电线圈。这是最经典的有刷电机。但是今天咱们谈论的是另一种更高效、性能更好的电机——无刷电机。

  如图是无刷电机的等效模型。内外两个灰色的轮子一个是定子,一个是转子(具体哪个是定子哪个是转子根据电机类型不一样)。此时转子和定子是完全重合在一起的,没有扭矩的存在。

  咱们定性地看,当外部的定子磁场扭转一个角度时,内部的转子会跟着旋转。这样一个时间段就存在扭矩了。

  所有的电机扭矩的大小正比于内外两个磁场的叉乘,即图中围出的平行四边形的面积。可见两个磁场重合时,叉乘为0,扭矩也为0,和之前的直观认知相符合。显然,当两个磁场呈90度时,平行四边形面积最大,此时的扭矩也最大。

  实际的无刷直流电机(BLDC)或永磁同步电机(PMSM)通常用三相****交流绕组线圈充当定子,永磁体作为转子。我们大家都希望通过电路控制定子绕组的输出,使之能够能产生一个大小尽可能恒定的旋转磁场,让转子和定子的扭矩达到最大值。

  FOC(Field-Oriented Control),即磁场定向控制,也称矢量变频,是近几年较为主流的高效控制无刷直流电机(BLDC)和永磁同步电机(PMSM)的选择。

  要得到一个恒定大小的旋转磁场很容易。当今主流的BLDC和PMSM电机定子均采用的是三相绕组,即各个绕组上的交流信号就是相位互差120°的信号。根据三相电机的结构,我们大家可以将一个恒定大小的旋转电压矢量分解到相位互差120°的方向上。如下图

  从上图能够正常的看到,只要控制电机的三个绕组产生相位互差120°的大小跟着时间按正弦规律变化的3个分矢量,就能够获得我们想要的旋转磁场

  然而,在实际的电机控制中,由于齿槽效应、磁通畸变等因素,电机的转矩会产生大量的波动,要一直地对控制信号做出修正。但是当电机转速较高时,电流环控制器必须跟踪频率逐步的提升的弦波信号,而且还要克服振幅和频率逐步的提升的电机反电动势。在这样的情况下,想要直接通过维持三路正弦信号得到旋转平滑、大小稳定并且从始至终保持和转子磁场方向垂直的磁场难以实现。

  我们重新再回到一开始的磁场叉乘。我们得知电机的转矩只与 平行于内磁场方向(称d轴)的磁场分量 和 垂直于内磁场方向的分量(称q轴)有关(如下图)。

  现在对于电机扭矩大小的控制就变成了q轴和d轴大小乘积的控制。在电机中,d轴上内磁场的大小是永磁铁产生的,是恒定的;我们对外磁场的控制实质上变成了q轴上的分量大小控制+外磁场的角度。

  我们能够正常的使用编码器测量转子的内磁场角度,然后根据内磁场的角度用电机绕组产生对应的外磁场。

  如上图所示,如果转子的电角度在θ1,则我们要在θ1处产生d、q轴大小的外磁场。如果转子的电角度在θ2,则我们要在θ2处产生d、q轴大小的外磁场。

  我们把角度θ1的情况单独提出来,把它移到原点去,然后把x、y轴重命名为α,β。根据空间矢量的关系,我们大家可以把q、d轴的大小分解到α,β轴上。这样的一个过程是所谓的“反帕克(Park)变换”。

  其实得到的结果很简单,它就是用了互差90°的正弦信号得到了大小恒定的旋转磁场。

  可以大概理解为在PWM输出的基础上增加若干花里胡哨的风骚处理( ̄▽ ̄)~*)

  绕了这么多弯弯,我们终于让电机转起来了。大家看到这个地方可能会说:“这是在折腾啥?(╬ ̄皿 ̄)不还是最后转成三个相差120°的正弦信号了吗?”

  我们先测量电机的3相电流。电机的信号如下图所示(把相差120°的电信号看成同一个旋转向量在三个相差120°坐标轴上的投影)

  根据我们之前的理论,我们应该的是两个互差90°的磁场。这里咱们又使用一个变换,把三个分磁场变换成α、β方向上的两个分磁场。这个叫做“克拉克(Clarke)变换”。

  再把α,β轴上的值映射到旋转的q、d轴上,得到此时电机实际的d值和p值。这是之前反Park变换的逆过程,“帕克Park变换”

  我们把测量到的d、q轴值与我们设定的值做对比,通过PI算法消除误差,再重新通过之前的流程输入到SVPWM中,这就完成了一个闭环控制,可以对定子磁场的做动态修正了。因为控制d、q是在控制电流值,所以这个环路叫做电流环。

  设置d0、q0值(目标值),经过反Park变换得到Iα和Iβ,输入给SVPWM执行

  测量q、d轴的值:测量电机的相电流(测量两相,通过Ia+Ib+Ic=0得到第三相),然后通过Clarke变换得到Iα和Iβ,然后通过park变换得到q、d轴的值。

  把测量到的d、q轴值与我们设定的d0、q0做对比,进行PID处理。(目标是让测量值与我们的设定值相同)

  调整d、q值输出,回到1.除了电流环之外,由于d、q是直流信号, 我们通过d、q也可以更轻松地控制电机的转速和旋转位置。比如设定电机转速为1000Rpmin,编码器测得当前转速为500,同样用PID算法增大q值就可以加大扭矩,让电机的速度加快了。这个环路叫速度环,即在电流环的外面加一层,改变q、d设定值来改变速度。当然我们也能加上位置环,通过对速度的积分能够获得电机的位置,计算位置误差进行PID调整。看ヾ(✿゚▽゚)ノ,我们把对三相交流正弦信号的控制转换成了对直流信号d,p的控制,这样优势就出来了,很nice~

  除了FOC之外,还有别的控制电机的方法,比如梯形波式控制、弦波控制等。详细的介绍可以借鉴这篇文章

  简单概括,弦波式换相能让电机在低速下运转平稳,但在高速运转下效率却大幅度的降低;而梯形波式换相在电机高速运转下工作比较正常,但在电机低速运转下,会产生力矩的波动。因此,矢量控制是对无刷电机的最佳控制方式~

  1 综述 电动助力转向系统EPS(electric power steering)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(hydraulic power steering)相比,EPS系统具有很多优点:仅在需要转向时才启动电机产生助力,能减少发动机燃油消耗;能在各种行驶工况下提供最佳助力,减小由路面不平所引起电动机的输出转矩通过传动装置的作用而助力向系的扰动,改善汽车的转向特性,提高汽车的主动安全性;没有液压回路,调整和检测更容易,装配自动化程度更高,且可通过设置不一样的程序,快速与不同车型匹配,缩短生产和开发周期;不存在漏油问题,减小对环境的污染。EPS系统是未来动力转向系统的一个发展趋势。

  全新技术增强马力、效率、速度与可靠性;同时减少相关成本并减少电路板空间 2023 年 12 月 6 日,中国北京讯 - 全球半导体解决方案供应商瑞萨电子今日宣布,推出适用于无刷直流(BLDC)电机应用的首创的无传感器电机驱动器IC系列新产品,该系列采用了瑞萨正在申请专利的全新技术,可使电机在无传感器的情况下实现零速度全扭矩,开创业界先河。全新电机驱动器IC使瑞萨客户能够设计出在给定扭矩下具有更大马力及速度的无传感器BLDC电机系统。此外,还降低了功耗,提高了可靠性,同时通过减少设计人需要使用的元件数量,来缩减成本和电路板空间。 瑞萨此次发布三款采用全新技术的新型电机驱动器IC。其中,RAA306012作为一款独立

  的可编程电机驱动器IC /

  据外媒报道,保时捷工程公司(Porsche Engineering)已经为全轮驱动电动SUV研发出一种新型扭矩控制管理系统,而且该系统正处于测试中。该系统能够在驾驶时提供最大的稳定性和安全性,而且无需使用额外的传感器。相反,该系统完全基于保时捷自主研发的软件,因此是使用电子设备来控制扭矩。 保时捷工程公司(保时捷股份公司的全资子公司)表示,此种驱动技术只出现在火星漫游者号(Mars rovers)探测器上,现在他们为公路汽车也研发了此种技术。 该技术适用于电动SUV原型车,此类汽车配备了4个电机,每个车轮一个,以实现全轮驱动。保时捷表示,此种系统可以在一定程度上完成极其多样化的动力分配,想象一下,就是每个电机配备了一个单独的油门踏板

  控制系统 让车辆在冰雪上行驶时保持稳定 /

  东芝电子元件及存储装置株式会社(“东芝”)宣布推出新型3相无刷电机驱动器“TB67B000AHG”,能满足空调、空气净化器、除湿器和吊扇等家用电器的需求。新型驱动器是“TB67B000系列”中新增的高压产品,能在单个封装中实现高效无刷电机驱动,并降低噪声。 TB67B000AHG产品图 市场对有助于降低功耗的高效3相无刷电机的需求日渐增长,特别是对新兴经济体而言,这样的产品能很好地应对供电电压波动的问题。此类电机需要更高电压的PWM驱动器IC来确定保证产品的可靠性。 东芝最新开发的600V TB67B000AHG驱动器IC与现有的500V TB67B000HG引脚兼容,可以轻松替

  的600V正弦波PWM驱动器IC /

  前言 随着控制技术的发展以及社会对节能要求的提高,直流无刷电机作为一种新型、高效率的电机得到了广泛的应用。传统的直流无刷电机采用方波控制方式,控制简单,容易实现,同时存在转矩脉动、换相噪声等问题,在一些对噪声有要求的应用领域存在局限性。针对这些应用,采用正弦波控制能很好的解决这样的一个问题。 直流无刷电机的正弦波控制简介 直流无刷电机的正弦波控制即通过对电机绕组施加一定的电压,使电机绕组中产生正弦电流,经过控制正弦电流的幅值及相位达到控制电机转矩的目的。与传统的方波控制相比,电机相电流为正弦,且连续变化,无换相电流突变,因此电机运行噪声低。 根据控制的复杂程度,直流无刷电机的正弦波控制可分为:简易正弦波控制与复

  简易正弦波控制 /

  1  引言 轧机是轧钢厂的核心设备之一,其工作效率及设备的可靠性直接决定了企业的生产能力。轧机传动轴作为轧机的重要核心部件,其断裂或破坏等故障直接影响了生产的进行,造成的损失巨大。   随着轧制速度和产量的持续不断的增加,使得轧制设备与其工作载荷的矛盾日趋明显;同时,在轧钢生产的全部过程中,由于其特殊的工艺制度,如粗轧R1、R2为可逆式轧机,需要频繁的启动和制动,同时轧件的突然咬入和抛出等都会引起轧机负荷的突然变化,形成一定的破坏能力。国内诸多钢铁企业曾多次发生过轧机主传动系统万向接轴断裂等重大事故,严重影响了企业的正常生产。由于缺乏相应的监测手段,无法判断事故发生时主传动系统的基本状态,给事故原因的查找及控制带来困难,更谈不上对

  电动机马力是啥意思 电动机的马力(Horsepower,缩写为hp)是用于描述电动机功率的一种常用单位,通常用来表示电动机能够输出的功率大小。马力是一种机械功率的单位,它是指在单位时间内(通常为一秒钟)所能做的功,即1马力等于每秒钟做功746焦耳(J)。 在工业和机械设备中,马力常用来表示电机的输出功率。例如,一个2马力的电动机表示它可以每秒钟做2*746=1492瓦特的功。不同马力的电机适用于不同的应用场景和负载需求,因此在选购电机时应该要依据详细情况来选择正真适合的马力。 如何知道发动机马力多大 要知道发动机的马力大小,能查看发动机相关的技术资料、车辆手册或者网上的相关信息。一般来说,车辆手册上会详细

  电机驱动能效不论提高多少,都会节省大量的电能,这就是市场对先进的电机控制算法的兴趣日浓的部分原因。三相无刷电机主要指是交流感应异步电机和永磁同步电机。这些电机以能效高、可靠性高、维护成本低、产品成本低和静音工作而著称。感应电机已在水泵或风扇等工业应用中得到普遍应用,并正在与永磁同步电机一起充斥家电、空调、汽车或伺服驱动器等市场。推动三相无刷电机发展的根本原因有:电子元器件的价格降低,实现复杂的控制策略以克服本身较差的动态性能成为可能。 以异步电机为例。简单的设计需要给定子施加三个120°相移的正弦波电压,这些绕组的排列方式能够产生一种旋转磁通量。利用变压器效应,这个磁通量在转子笼内感应出一股电流,然后产生转子磁通量。就是这两种磁通

  FOC硬核和软核控制特点及吊扇典型应用方案介绍

  控制系统开发

  嵌入式工程师AI挑战营(初阶):基于RV1106,动手部署手写数字识别落地

  有奖直播 瑞萨新一代视觉 AI MPU 处理器 RZ/V2H:高算力、低功耗、实时控制

  在当今加快速度进行发展的技术格局中,汽车、通信和工业市场处于数字化转型的最前沿。 由AI和机器学习驱动的先进的技术开创了一个创新的新时代 ...

  分享一型已量产的风扇设计的具体方案。I下面分功能模块来讲解下:电源部分该电源部分采用小家电常用的阻容降压电路,阻容降压的特点是成本低,缺 ...

  什么是相位检测自动对焦(PDAF)?相位检测自动对焦,全称Phase Detection Auto Focus(简称PDAF),是相机等拍摄设备中的关键技术,主 ...

  快节奏已经是每个人生活的常态,开放式的办公环境、上下班通勤路上、出差旅途中我们无时无刻不被噪音污染影响着。于是乎随着科学技术的发展 ...

  使用音频音调电路有两个基本原因。第一个原因是调节信号进入音频功率放大器时的带宽。如果带宽不受限制,则可能没办法在扬声器处恢复原始信号 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科